Go to the source code of this file.
|
PetscErrorCode | Legendre_polynomials (int p, double s, double *diff_s, double *L, double *diffL, const int dim) |
| Calculate Legendre approximation basis.
|
|
PetscErrorCode | Jacobi_polynomials (int p, double alpha, double x, double t, double *diff_x, double *diff_t, double *L, double *diffL, const int dim) |
| Calculate Jacobi approximation basis.
|
|
PetscErrorCode | IntegratedJacobi_polynomials (int p, double alpha, double x, double t, double *diff_x, double *diff_t, double *L, double *diffL, const int dim) |
| Calculate integrated Jacobi approximation basis.
|
|
PetscErrorCode | Lobatto_polynomials (int p, double s, double *diff_s, double *L, double *diffL, const int dim) |
| Calculate Lobatto base functions [28].
|
|
PetscErrorCode | LobattoKernel_polynomials (int p, double s, double *diff_s, double *L, double *diffL, const int dim) |
| Calculate Kernel Lobatto base functions.
|
|
◆ LOBATTO_PHI0
#define LOBATTO_PHI0 |
( |
| x | ) |
|
Value:(-2.0 * 1.22474487139158904909864203735)
Definitions taken from Hermes2d code.
kernel functions for Lobatto base
Definition at line 126 of file base_functions.h.
◆ LOBATTO_PHI0X
#define LOBATTO_PHI0X |
( |
| x | ) |
|
Value:
Derivatives of kernel functions for Lobbatto base.
Definition at line 157 of file base_functions.h.
◆ LOBATTO_PHI1
#define LOBATTO_PHI1 |
( |
| x | ) |
|
Value:(-2.0 * 1.58113883008418966599944677222 * (x))
Definition at line 127 of file base_functions.h.
◆ LOBATTO_PHI1X
#define LOBATTO_PHI1X |
( |
| x | ) |
|
Value:(-2.0 * 1.58113883008418966599944677222)
Definition at line 158 of file base_functions.h.
◆ LOBATTO_PHI2
#define LOBATTO_PHI2 |
( |
| x | ) |
|
Value: (-1.0 / 2.0 * 1.87082869338697069279187436616 * (5 * (x) * (x)-1))
Definition at line 128 of file base_functions.h.
128#define LOBATTO_PHI2(x) \
129 (-1.0 / 2.0 * 1.87082869338697069279187436616 * (5 * (x) * (x)-1))
◆ LOBATTO_PHI2X
#define LOBATTO_PHI2X |
( |
| x | ) |
|
Value: (-1.0 / 2.0 * 1.87082869338697069279187436616 * (10 * (x)))
Definition at line 159 of file base_functions.h.
159#define LOBATTO_PHI2X(x) \
160 (-1.0 / 2.0 * 1.87082869338697069279187436616 * (10 * (x)))
◆ LOBATTO_PHI3
#define LOBATTO_PHI3 |
( |
| x | ) |
|
Value: (-1.0 / 2.0 * 2.12132034355964257320253308631 * (7 * (x) * (x)-3) * (x))
Definition at line 130 of file base_functions.h.
130#define LOBATTO_PHI3(x) \
131 (-1.0 / 2.0 * 2.12132034355964257320253308631 * (7 * (x) * (x)-3) * (x))
◆ LOBATTO_PHI3X
#define LOBATTO_PHI3X |
( |
| x | ) |
|
Value: (-1.0 / 2.0 * 2.12132034355964257320253308631 * (21.0 * (x) * (x)-3.0))
Definition at line 161 of file base_functions.h.
161#define LOBATTO_PHI3X(x) \
162 (-1.0 / 2.0 * 2.12132034355964257320253308631 * (21.0 * (x) * (x)-3.0))
◆ LOBATTO_PHI4
#define LOBATTO_PHI4 |
( |
| x | ) |
|
Value: (-1.0 / 4.0 * 2.34520787991171477728281505677 * \
(21 * (x) * (x) * (x) * (x)-14 * (x) * (x) + 1))
Definition at line 132 of file base_functions.h.
132#define LOBATTO_PHI4(x) \
133 (-1.0 / 4.0 * 2.34520787991171477728281505677 * \
134 (21 * (x) * (x) * (x) * (x)-14 * (x) * (x) + 1))
◆ LOBATTO_PHI4X
#define LOBATTO_PHI4X |
( |
| x | ) |
|
Value: (-1.0 / 4.0 * 2.34520787991171477728281505677 * \
((84.0 * (x) * (x)-28.0) * (x)))
Definition at line 163 of file base_functions.h.
163#define LOBATTO_PHI4X(x) \
164 (-1.0 / 4.0 * 2.34520787991171477728281505677 * \
165 ((84.0 * (x) * (x)-28.0) * (x)))
◆ LOBATTO_PHI5
#define LOBATTO_PHI5 |
( |
| x | ) |
|
Value: (-1.0 / 4.0 * 2.54950975679639241501411205451 * \
((33 * (x) * (x)-30) * (x) * (x) + 5) * (x))
Definition at line 135 of file base_functions.h.
135#define LOBATTO_PHI5(x) \
136 (-1.0 / 4.0 * 2.54950975679639241501411205451 * \
137 ((33 * (x) * (x)-30) * (x) * (x) + 5) * (x))
◆ LOBATTO_PHI5X
#define LOBATTO_PHI5X |
( |
| x | ) |
|
Value: (-1.0 / 4.0 * 2.54950975679639241501411205451 * \
((165.0 * (x) * (x)-90.0) * (x) * (x) + 5.0))
Definition at line 166 of file base_functions.h.
166#define LOBATTO_PHI5X(x) \
167 (-1.0 / 4.0 * 2.54950975679639241501411205451 * \
168 ((165.0 * (x) * (x)-90.0) * (x) * (x) + 5.0))
◆ LOBATTO_PHI6
#define LOBATTO_PHI6 |
( |
| x | ) |
|
Value: (-1.0 / 32.0 * 2.73861278752583056728484891400 * \
(((429 * (x) * (x)-495) * (x) * (x) + 135) * (x) * (x)-5))
Definition at line 138 of file base_functions.h.
138#define LOBATTO_PHI6(x) \
139 (-1.0 / 32.0 * 2.73861278752583056728484891400 * \
140 (((429 * (x) * (x)-495) * (x) * (x) + 135) * (x) * (x)-5))
◆ LOBATTO_PHI6X
#define LOBATTO_PHI6X |
( |
| x | ) |
|
Value: (-1.0 / 32.0 * 2.73861278752583056728484891400 * \
(((2574.0 * (x) * (x)-1980.0) * (x) * (x) + 270.0) * (x)))
Definition at line 169 of file base_functions.h.
169#define LOBATTO_PHI6X(x) \
170 (-1.0 / 32.0 * 2.73861278752583056728484891400 * \
171 (((2574.0 * (x) * (x)-1980.0) * (x) * (x) + 270.0) * (x)))
◆ LOBATTO_PHI7
#define LOBATTO_PHI7 |
( |
| x | ) |
|
Value: (-1.0 / 32.0 * 2.91547594742265023543707643877 * \
(((715 * (x) * (x)-1001) * (x) * (x) + 385) * (x) * (x)-35) * (x))
Definition at line 141 of file base_functions.h.
141#define LOBATTO_PHI7(x) \
142 (-1.0 / 32.0 * 2.91547594742265023543707643877 * \
143 (((715 * (x) * (x)-1001) * (x) * (x) + 385) * (x) * (x)-35) * (x))
◆ LOBATTO_PHI7X
#define LOBATTO_PHI7X |
( |
| x | ) |
|
Value: (-1.0 / 32.0 * 2.91547594742265023543707643877 * \
(((5005.0 * (x) * (x)-5005.0) * (x) * (x) + 1155.0) * (x) * (x)-35.0))
Definition at line 172 of file base_functions.h.
172#define LOBATTO_PHI7X(x) \
173 (-1.0 / 32.0 * 2.91547594742265023543707643877 * \
174 (((5005.0 * (x) * (x)-5005.0) * (x) * (x) + 1155.0) * (x) * (x)-35.0))
◆ LOBATTO_PHI8
#define LOBATTO_PHI8 |
( |
| x | ) |
|
Value: (-1.0 / 64.0 * 3.08220700148448822512509619073 * \
((((2431 * (x) * (x)-4004) * (x) * (x) + 2002) * (x) * (x)-308) * (x) * \
(x) + \
7))
Definition at line 144 of file base_functions.h.
144#define LOBATTO_PHI8(x) \
145 (-1.0 / 64.0 * 3.08220700148448822512509619073 * \
146 ((((2431 * (x) * (x)-4004) * (x) * (x) + 2002) * (x) * (x)-308) * (x) * \
147 (x) + \
148 7))
◆ LOBATTO_PHI8X
#define LOBATTO_PHI8X |
( |
| x | ) |
|
Value: (-1.0 / 64.0 * 3.08220700148448822512509619073 * \
((((19448.0 * (x) * (x)-24024.0) * (x) * (x) + 8008.0) * (x) * (x)-616.0) * \
(x)))
Definition at line 175 of file base_functions.h.
175#define LOBATTO_PHI8X(x) \
176 (-1.0 / 64.0 * 3.08220700148448822512509619073 * \
177 ((((19448.0 * (x) * (x)-24024.0) * (x) * (x) + 8008.0) * (x) * (x)-616.0) * \
178 (x)))
◆ LOBATTO_PHI9
#define LOBATTO_PHI9 |
( |
| x | ) |
|
Value: (-1.0 / 128.0 * 6.4807406984078603784382721642 * \
((((4199 * (x) * (x)-7956) * (x) * (x) + 4914) * (x) * (x)-1092) * (x) * \
(x) + \
63) * \
(x))
Definition at line 149 of file base_functions.h.
149#define LOBATTO_PHI9(x) \
150 (-1.0 / 128.0 * 6.4807406984078603784382721642 * \
151 ((((4199 * (x) * (x)-7956) * (x) * (x) + 4914) * (x) * (x)-1092) * (x) * \
152 (x) + \
153 63) * \
154 (x))
◆ LOBATTO_PHI9X
#define LOBATTO_PHI9X |
( |
| x | ) |
|
Value: (-1.0 / 128.0 * 6.4807406984078603784382721642 * \
((((37791.0 * (x) * (x)-55692.0) * (x) * (x) + 24570.0) * (x) * \
(x)-3276.0) * \
(x) * (x)-63.0))
Definition at line 179 of file base_functions.h.
179#define LOBATTO_PHI9X(x) \
180 (-1.0 / 128.0 * 6.4807406984078603784382721642 * \
181 ((((37791.0 * (x) * (x)-55692.0) * (x) * (x) + 24570.0) * (x) * \
182 (x)-3276.0) * \
183 (x) * (x)-63.0))
◆ IntegratedJacobi_polynomials()
Calculate integrated Jacobi approximation basis.
For more details see [29]
- Parameters
-
p | is approximation order |
alpha | polynomial parameter |
x | is position \(s\in[0,t]\) |
t | range of polynomial |
diff_x | derivatives of shape functions, i.e. \(\frac{\partial x}{\partial
\xi_i}\) |
diff_t | derivatives of shape functions, i.e. \(\frac{\partial
t}{\partial \xi_i}\) |
- Return values
-
L | approximation functions |
diffL | derivatives, i.e. \(\frac{\partial L}{\partial \xi_i}\) |
- Parameters
-
- Returns
- error code
Definition at line 134 of file base_functions.c.
137 {
139#ifndef NDEBUG
140 if (dim < 1)
142 if (dim > 3)
144 if (p < 1)
146#endif
148 if (diffL != NULL) {
150 for (;
d != dim; ++
d) {
151 diffL[
d * p + 0] = diff_x[
d];
152 }
153 }
154 if (p == 0)
156 double jacobi[(p + 1)];
157 double diff_jacobi[(p + 1) * dim];
159 dim);
164 const double a = (
i + alpha) / ((2 *
i + alpha - 1) * (2 *
i + alpha));
165 const double b = alpha / ((2 *
i + alpha - 2) * (2 *
i + alpha));
166 const double c = (
i - 1) / ((2 *
i + alpha - 2) * (2 *
i + alpha - 1));
167 L[
l] =
a * jacobi[
i] + b *
t * jacobi[
i - 1] -
c *
t *
t * jacobi[
i - 2];
168 if (diffL != NULL) {
170 for (;
d != dim; ++
d) {
171 diffL[
d * p +
l] =
a * diff_jacobi[
d * (p + 1) +
i] +
172 b * (
t * diff_jacobi[d * (p + 1) +
i - 1] +
173 diff_t[d] * jacobi[
i - 1]) -
174 c * (
t *
t * diff_jacobi[
d * (p + 1) +
i - 2] +
175 2 *
t * diff_t[
d] * jacobi[
i - 2]);
176 }
177 }
178 }
180}
static PetscErrorCode ierr
PetscErrorCode Jacobi_polynomials(int p, double alpha, double x, double t, double *diff_x, double *diff_t, double *L, double *diffL, const int dim)
Calculate Jacobi approximation basis.
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
#define MoFEMFunctionBeginHot
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
FTensor::Index< 'i', SPACE_DIM > i
const double c
speed of light (cm/ns)
FTensor::Index< 'l', 3 > l
constexpr double t
plate stiffness
◆ Jacobi_polynomials()
Calculate Jacobi approximation basis.
For more details see [29]
- Parameters
-
p | is approximation order |
alpha | polynomial parameter |
x | is position \(s\in[0,t]\) |
t | range of polynomial |
diff_x | derivatives of shape functions, i.e. \(\frac{\partial x}{\partial
\xi_i}\) |
diff_t | derivatives of shape functions, i.e. \(\frac{\partial
t}{\partial \xi_i}\) |
- Return values
-
L | approximation functions |
diffL | derivatives, i.e. \(\frac{\partial L}{\partial \xi_i}\) |
- Parameters
-
- Returns
- error code
Definition at line 67 of file base_functions.c.
69 {
71#ifndef NDEBUG
72 if (dim < 1)
74 if (dim > 3)
76 if (p < 0)
78
79 if (diffL != NULL) {
80 if (diff_x == NULL) {
82 }
83 }
84
85#endif
87 if (diffL != NULL) {
88 diffL[0 * (p + 1) + 0] = 0;
89 if (dim >= 2) {
90 diffL[1 * (p + 1) + 0] = 0;
91 if (dim == 3) {
92 diffL[2 * (p + 1) + 0] = 0;
93 }
94 }
95 }
96 if (p == 0)
98 L[1] = 2 * x -
t + alpha * x;
99 if (diffL != NULL) {
101 for (;
d < dim; ++
d) {
102 double d_t = (diff_t) ? diff_t[d] : 0;
103 diffL[
d * (p + 1) + 1] = (2 + alpha) * diff_x[
d] - d_t;
104 }
105 }
106 if (p == 1)
111 double a = 2 * lp1 * (lp1 + alpha) * (2 * lp1 + alpha - 2);
112 double b = 2 * lp1 + alpha - 1;
113 double c = (2 * lp1 + alpha) * (2 * lp1 + alpha - 2);
114 double d = 2 * (lp1 + alpha - 1) * (lp1 - 1) * (2 * lp1 + alpha);
115 double A = b * (
c * (2 * x -
t) + alpha * alpha *
t) /
a;
116 double B =
d *
t *
t /
a;
117 L[lp1] = A *
L[
l] -
B *
L[
l - 1];
118 if (diffL != NULL) {
119 int z = 0;
120 for (; z < dim; ++z) {
121 double d_t = (diff_t) ? diff_t[z] : 0;
122 double diffA =
123 b * (
c * (2 * diff_x[z] - d_t) + alpha * alpha * d_t) /
a;
124 double diffB =
d * 2 *
t * d_t /
a;
125 diffL[z * (p + 1) + lp1] = A * diffL[z * (p + 1) +
l] -
126 B * diffL[z * (p + 1) +
l - 1] +
127 diffA * L[
l] - diffB * L[
l - 1];
128 }
129 }
130 }
132}