v0.14.0
Loading...
Searching...
No Matches
base_functions.c File Reference
#include <cblas.h>
#include <petscsys.h>
#include <phg-quadrule/quad.h>
#include <definitions.h>
#include <base_functions.h>

Go to the source code of this file.

Functions

PetscErrorCode Legendre_polynomials (int p, double s, double *diff_s, double *L, double *diffL, const int dim)
 Calculate Legendre approximation basis.
 
PetscErrorCode Jacobi_polynomials (int p, double alpha, double x, double t, double *diff_x, double *diff_t, double *L, double *diffL, const int dim)
 Calculate Jacobi approximation basis.
 
PetscErrorCode IntegratedJacobi_polynomials (int p, double alpha, double x, double t, double *diff_x, double *diff_t, double *L, double *diffL, const int dim)
 Calculate integrated Jacobi approximation basis.
 
PetscErrorCode Lobatto_polynomials (int p, double s, double *diff_s, double *L, double *diffL, const int dim)
 Calculate Lobatto base functions [28].
 
static double f_phi0 (double x)
 
static double f_phi1 (double x)
 
static double f_phi2 (double x)
 
static double f_phi3 (double x)
 
static double f_phi4 (double x)
 
static double f_phi5 (double x)
 
static double f_phi6 (double x)
 
static double f_phi7 (double x)
 
static double f_phi8 (double x)
 
static double f_phi9 (double x)
 
static double f_phi0x (double x)
 
static double f_phi1x (double x)
 
static double f_phi2x (double x)
 
static double f_phi3x (double x)
 
static double f_phi4x (double x)
 
static double f_phi5x (double x)
 
static double f_phi6x (double x)
 
static double f_phi7x (double x)
 
static double f_phi8x (double x)
 
static double f_phi9x (double x)
 
PetscErrorCode LobattoKernel_polynomials (int p, double s, double *diff_s, double *L, double *diffL, const int dim)
 Calculate Kernel Lobatto base functions.
 

Variables

static PetscErrorCode ierr
 
static double(* f_phi [])(double x)
 
static double(* f_phix [])(double x)
 

Function Documentation

◆ f_phi0()

static double f_phi0 ( double x)
static

Definition at line 233 of file base_functions.c.

233{ return LOBATTO_PHI0(x); }
#define LOBATTO_PHI0(x)
Definitions taken from Hermes2d code.

◆ f_phi0x()

static double f_phi0x ( double x)
static

Definition at line 247 of file base_functions.c.

247{ return LOBATTO_PHI0X(x); }
#define LOBATTO_PHI0X(x)
Derivatives of kernel functions for Lobbatto base.

◆ f_phi1()

static double f_phi1 ( double x)
static

Definition at line 234 of file base_functions.c.

234{ return LOBATTO_PHI1(x); }
#define LOBATTO_PHI1(x)

◆ f_phi1x()

static double f_phi1x ( double x)
static

Definition at line 248 of file base_functions.c.

248{ return LOBATTO_PHI1X(x); }
#define LOBATTO_PHI1X(x)

◆ f_phi2()

static double f_phi2 ( double x)
static

Definition at line 235 of file base_functions.c.

235{ return LOBATTO_PHI2(x); }
#define LOBATTO_PHI2(x)

◆ f_phi2x()

static double f_phi2x ( double x)
static

Definition at line 249 of file base_functions.c.

249{ return LOBATTO_PHI2X(x); }
#define LOBATTO_PHI2X(x)

◆ f_phi3()

static double f_phi3 ( double x)
static

Definition at line 236 of file base_functions.c.

236{ return LOBATTO_PHI3(x); }
#define LOBATTO_PHI3(x)

◆ f_phi3x()

static double f_phi3x ( double x)
static

Definition at line 250 of file base_functions.c.

250{ return LOBATTO_PHI3X(x); }
#define LOBATTO_PHI3X(x)

◆ f_phi4()

static double f_phi4 ( double x)
static

Definition at line 237 of file base_functions.c.

237{ return LOBATTO_PHI4(x); }
#define LOBATTO_PHI4(x)

◆ f_phi4x()

static double f_phi4x ( double x)
static

Definition at line 251 of file base_functions.c.

251{ return LOBATTO_PHI4X(x); }
#define LOBATTO_PHI4X(x)

◆ f_phi5()

static double f_phi5 ( double x)
static

Definition at line 238 of file base_functions.c.

238{ return LOBATTO_PHI5(x); }
#define LOBATTO_PHI5(x)

◆ f_phi5x()

static double f_phi5x ( double x)
static

Definition at line 252 of file base_functions.c.

252{ return LOBATTO_PHI5X(x); }
#define LOBATTO_PHI5X(x)

◆ f_phi6()

static double f_phi6 ( double x)
static

Definition at line 239 of file base_functions.c.

239{ return LOBATTO_PHI6(x); }
#define LOBATTO_PHI6(x)

◆ f_phi6x()

static double f_phi6x ( double x)
static

Definition at line 253 of file base_functions.c.

253{ return LOBATTO_PHI6X(x); }
#define LOBATTO_PHI6X(x)

◆ f_phi7()

static double f_phi7 ( double x)
static

Definition at line 240 of file base_functions.c.

240{ return LOBATTO_PHI7(x); }
#define LOBATTO_PHI7(x)

◆ f_phi7x()

static double f_phi7x ( double x)
static

Definition at line 254 of file base_functions.c.

254{ return LOBATTO_PHI7X(x); }
#define LOBATTO_PHI7X(x)

◆ f_phi8()

static double f_phi8 ( double x)
static

Definition at line 241 of file base_functions.c.

241{ return LOBATTO_PHI8(x); }
#define LOBATTO_PHI8(x)

◆ f_phi8x()

static double f_phi8x ( double x)
static

Definition at line 255 of file base_functions.c.

255{ return LOBATTO_PHI8X(x); }
#define LOBATTO_PHI8X(x)

◆ f_phi9()

static double f_phi9 ( double x)
static

Definition at line 242 of file base_functions.c.

242{ return LOBATTO_PHI9(x); }
#define LOBATTO_PHI9(x)

◆ f_phi9x()

static double f_phi9x ( double x)
static

Definition at line 256 of file base_functions.c.

256{ return LOBATTO_PHI9X(x); }
#define LOBATTO_PHI9X(x)

◆ IntegratedJacobi_polynomials()

PetscErrorCode IntegratedJacobi_polynomials ( int p,
double alpha,
double x,
double t,
double * diff_x,
double * diff_t,
double * L,
double * diffL,
const int dim )

Calculate integrated Jacobi approximation basis.

For more details see [29]

Parameters
pis approximation order
alphapolynomial parameter
xis position \(s\in[0,t]\)
trange of polynomial
diff_xderivatives of shape functions, i.e. \(\frac{\partial x}{\partial \xi_i}\)
diff_tderivatives of shape functions, i.e. \(\frac{\partial t}{\partial \xi_i}\)
Return values
Lapproximation functions
diffLderivatives, i.e. \(\frac{\partial L}{\partial \xi_i}\)
Parameters
dimdimension
Returns
error code

Definition at line 134 of file base_functions.c.

137 {
139#ifndef NDEBUG
140 if (dim < 1)
141 SETERRQ(PETSC_COMM_SELF, MOFEM_INVALID_DATA, "dim < 1");
142 if (dim > 3)
143 SETERRQ(PETSC_COMM_SELF, MOFEM_INVALID_DATA, "dim > 3");
144 if (p < 1)
145 SETERRQ(PETSC_COMM_SELF, MOFEM_INVALID_DATA, "p < 1");
146#endif // NDEBUG
147 L[0] = x;
148 if (diffL != NULL) {
149 int d = 0;
150 for (; d != dim; ++d) {
151 diffL[d * p + 0] = diff_x[d];
152 }
153 }
154 if (p == 0)
156 double jacobi[(p + 1)];
157 double diff_jacobi[(p + 1) * dim];
158 ierr = Jacobi_polynomials(p, alpha, x, t, diff_x, diff_t, jacobi, diff_jacobi,
159 dim);
160 CHKERRQ(ierr);
161 int l = 1;
162 for (; l < p; l++) {
163 int i = l + 1;
164 const double a = (i + alpha) / ((2 * i + alpha - 1) * (2 * i + alpha));
165 const double b = alpha / ((2 * i + alpha - 2) * (2 * i + alpha));
166 const double c = (i - 1) / ((2 * i + alpha - 2) * (2 * i + alpha - 1));
167 L[l] = a * jacobi[i] + b * t * jacobi[i - 1] - c * t * t * jacobi[i - 2];
168 if (diffL != NULL) {
169 int d = 0;
170 for (; d != dim; ++d) {
171 diffL[d * p + l] = a * diff_jacobi[d * (p + 1) + i] +
172 b * (t * diff_jacobi[d * (p + 1) + i - 1] +
173 diff_t[d] * jacobi[i - 1]) -
174 c * (t * t * diff_jacobi[d * (p + 1) + i - 2] +
175 2 * t * diff_t[d] * jacobi[i - 2]);
176 }
177 }
178 }
180}
constexpr double a
static PetscErrorCode ierr
PetscErrorCode Jacobi_polynomials(int p, double alpha, double x, double t, double *diff_x, double *diff_t, double *L, double *diffL, const int dim)
Calculate Jacobi approximation basis.
#define MoFEMFunctionReturnHot(a)
Last executable line of each PETSc function used for error handling. Replaces return()
@ MOFEM_INVALID_DATA
Definition definitions.h:36
#define MoFEMFunctionBeginHot
First executable line of each MoFEM function, used for error handling. Final line of MoFEM functions ...
FTensor::Index< 'i', SPACE_DIM > i
const double c
speed of light (cm/ns)
FTensor::Index< 'l', 3 > l
constexpr double t
plate stiffness
Definition plate.cpp:58

◆ Jacobi_polynomials()

PetscErrorCode Jacobi_polynomials ( int p,
double alpha,
double x,
double t,
double * diff_x,
double * diff_t,
double * L,
double * diffL,
const int dim )

Calculate Jacobi approximation basis.

For more details see [29]

Parameters
pis approximation order
alphapolynomial parameter
xis position \(s\in[0,t]\)
trange of polynomial
diff_xderivatives of shape functions, i.e. \(\frac{\partial x}{\partial \xi_i}\)
diff_tderivatives of shape functions, i.e. \(\frac{\partial t}{\partial \xi_i}\)
Return values
Lapproximation functions
diffLderivatives, i.e. \(\frac{\partial L}{\partial \xi_i}\)
Parameters
dimdimension
Returns
error code

Definition at line 67 of file base_functions.c.

69 {
71#ifndef NDEBUG
72 if (dim < 1)
73 SETERRQ(PETSC_COMM_SELF, MOFEM_INVALID_DATA, "dim < 1");
74 if (dim > 3)
75 SETERRQ(PETSC_COMM_SELF, MOFEM_INVALID_DATA, "dim > 3");
76 if (p < 0)
77 SETERRQ(PETSC_COMM_SELF, MOFEM_INVALID_DATA, "p < 0");
78
79 if (diffL != NULL) {
80 if (diff_x == NULL) {
81 SETERRQ(PETSC_COMM_SELF, MOFEM_INVALID_DATA, "diff_s == NULL");
82 }
83 }
84
85#endif // NDEBUG
86 L[0] = 1;
87 if (diffL != NULL) {
88 diffL[0 * (p + 1) + 0] = 0;
89 if (dim >= 2) {
90 diffL[1 * (p + 1) + 0] = 0;
91 if (dim == 3) {
92 diffL[2 * (p + 1) + 0] = 0;
93 }
94 }
95 }
96 if (p == 0)
98 L[1] = 2 * x - t + alpha * x;
99 if (diffL != NULL) {
100 int d = 0;
101 for (; d < dim; ++d) {
102 double d_t = (diff_t) ? diff_t[d] : 0;
103 diffL[d * (p + 1) + 1] = (2 + alpha) * diff_x[d] - d_t;
104 }
105 }
106 if (p == 1)
108 int l = 1;
109 for (; l < p; l++) {
110 int lp1 = l + 1;
111 double a = 2 * lp1 * (lp1 + alpha) * (2 * lp1 + alpha - 2);
112 double b = 2 * lp1 + alpha - 1;
113 double c = (2 * lp1 + alpha) * (2 * lp1 + alpha - 2);
114 double d = 2 * (lp1 + alpha - 1) * (lp1 - 1) * (2 * lp1 + alpha);
115 double A = b * (c * (2 * x - t) + alpha * alpha * t) / a;
116 double B = d * t * t / a;
117 L[lp1] = A * L[l] - B * L[l - 1];
118 if (diffL != NULL) {
119 int z = 0;
120 for (; z < dim; ++z) {
121 double d_t = (diff_t) ? diff_t[z] : 0;
122 double diffA =
123 b * (c * (2 * diff_x[z] - d_t) + alpha * alpha * d_t) / a;
124 double diffB = d * 2 * t * d_t / a;
125 diffL[z * (p + 1) + lp1] = A * diffL[z * (p + 1) + l] -
126 B * diffL[z * (p + 1) + l - 1] +
127 diffA * L[l] - diffB * L[l - 1];
128 }
129 }
130 }
132}

Variable Documentation

◆ f_phi

double(* f_phi[])(double x) ( double x)
static
Initial value:
static double f_phi4(double x)
static double f_phi1(double x)
static double f_phi0(double x)
static double f_phi7(double x)
static double f_phi8(double x)
static double f_phi5(double x)
static double f_phi3(double x)
static double f_phi9(double x)
static double f_phi2(double x)
static double f_phi6(double x)

Definition at line 244 of file base_functions.c.

◆ f_phix

double(* f_phix[])(double x) ( double x)
static
Initial value:
static double f_phi8x(double x)
static double f_phi0x(double x)
static double f_phi4x(double x)
static double f_phi2x(double x)
static double f_phi1x(double x)
static double f_phi9x(double x)
static double f_phi7x(double x)
static double f_phi3x(double x)
static double f_phi5x(double x)
static double f_phi6x(double x)

Definition at line 258 of file base_functions.c.

◆ ierr