
Implementation of the RVE boundary conditions for the textile
composites

Zahur Ullah, Lukasz Kaczmarczyk and Chris J. Pearce

School of Engineering, Rankine Building, The University of Glasgow, Glasgow, UK, G12
8LT

1 Introduction

For the textile composites, representative volume element (RVE) boundary conditions are
implemented using the generalised procedure given in [1]. In matrix form these boundary
conditions are given as

Cu = Dε̄ = g, (1)

where ε =
[

εxx εyy εzz 2εxy 2εyz 2εzx
]T

is the macro-strain associated with a
Gauss point, g is the constraints applied to enforce the boundary conditions, while ma-
trices C and D are given as

C =

∫

Γ

HNTNdΓ, D =

∫

Γ

HNTXdΓ. (2)

In Equation (2), N is a matrix of shape functions, X is a matrix of Gauss point coordinates
and H is a matrix specific to the type of boundary conditions used (e.g. displacement,
periodic, traction). These matrices are further explained in the following sections. Integra-
tion in Equation (2) are performed over the boundary Γ of the RVE. The RVE boundary
conditions are implemented in the University of Glasgow in-house computational tool
MoFEM, which is based on the hierarchic finite element formulation [2] and allows us to
use arbitrary order of approximation for the RVE simulation.

2 RVE displacement boundary conditions

For the displacement boundary condition case, the final system of linear equations is
arranged as shown in Figure 1. In Figure 1, K, u and F are standard stiffness matrix,

=

Figure 1: Final matrix and vector arrangements for displacement boundary conditions

1

displacement and force vector respectively, where 3n are the total number of RVE degrees
of freedom, including high order degrees of freedom associated with edges, faces and
volumes explained below in this section or 3n is the total number of nodes multiplied by
the number of degrees of freedom in each cartesian direction. This will depend on the
order of the approximation. Additional matrices and vectors appears in Figure 1 is due
to the implementation of the RVE displacement boundary conditions. Matrix 0 is zeros
matrix and matrices C and D as already mentioned in Equation (2) are calculated and
assembled, while integrating over the boundary Γ of the RVE. Unknown parameters λ are
Lagrange multipliers and 3m used in the sizes of these additional vectors and matrices
are the degrees of freedoms associated with the boundary (including degrees of freedoms
associated with edges and faces) of the RVE.

A sample RVE geometry and corresponding mesh are shown in Figure 2(a) and Figure 2(b)
respectively, which consist of fibres and matrix. The RVE is discretised with tetrahedral
elements, which leads to triangular elements over its boundary. These triangular elements
are subsequently used to perform integration in Equations (2).

(a) RVE geometry (b) RVE mesh

Figure 2: Sampel RVE geometry and corresponding mesh

For the 1st order hierarchic finite element or (p = 1) (in which approximation functions
are associated only with nodes), matrix C is (9 × 9) for each triangular element on the
RVE boundary, i.e.

C(9×9) =

∫

Γ

H(9×9)N
T
(9×3)N(3×9)dΓ, (3)

In the displacement boundary condition case, matrix H is an identity matrix and for every
Gauss point, the shape function matrix N is written as

N =

N1 0 0 N2 0 0 N3 0 0
0 N1 0 0 N2 0 0 N3 0
0 0 N1 0 0 N2 0 0 N3

 . (4)

Furthermore, for the 1st order or (p = 1) coordinate matrix D is (9× 6) and is written as

D(9×6) =

∫

Γ

H(9×9)N
T
(9×3)X(3×6)dΓ, (5)

2

where X is the Gauss point coordinate matrix and is written as

X =
1

2

2x 0 0 y 0 z
0 2y 0 x z 0
0 0 2z 0 y x

 , (6)

where x, y and z are the cartesian coordinates evaluated at the integration points dur-
ing numerical integration they are found using the known nodal coordinates and shape
functions associated with these nodes, using

x1 · · · xng

y1 · · · yng
z1 · · · zng

 =

xnd
1 xnd

2 xnd
3

ynd1 ynd2 ynd3
znd1 znd2 znd3

N1 · · · Nng

N2 · · · Nng

N3 · · · Nng

 , (7)

where ng are the total number of Gauss points used in each triangular element on the
boundary to perform numerical integration and xnd, ynd and znd are nodal coordinates.

For higher orders of approximation or (p > 1), additional degrees of freedoms are asso-
ciated with edges, faces and volume for a general three dimensional finite element [2].
In case of two-dimensional elements, these additional degrees of freedoms are associated
with its edges and faces. The exact number of degrees of freedoms associated with each
edge, face and volume for high order of approximations (p > 1) is shown in Table 1, in
which p ∈ N is active order of approximation and N is set of natural number.

Space Vertices Edges Faces Volume
H1 1 p− 1 (p− 2)(p− 1)/2 (p− 3)(p− 2)(p− 1)/6

Table 1: Degrees of freedoms associated with hierarchic finite element

Furthermore for each edge (e.g. triangular element), for 2nd and 3rd order of approxima-
tion, i.e. (p = 2) and (p = 3) matrix C is written as

C(3×3) =

∫

Γ

H(3×3)N
T
(3×3)N(3×3)dΓ, p = 2, (8a)

C(6×6) =

∫

Γ

H(6×6)N
T
(6×3)N(3×6)dΓ, p = 3, (8b)

(8c)

while matrix D is written as

D(3×6) =

∫

Γ

H(3×3)N
T
(3×3)X(3×6)dΓ, p = 2, (9a)

D(6×6) =

∫

Γ

H(6×6)N
T
(6×3)X(3×6)dΓ, p = 3. (9b)

(9c)

In Equations 8 and 9, matrices H(3×3) and H(6×6) are (3×3) and (6×6) identity matrices,

3

while shape functions matrices N(3×3) and N(3×6) are written as

N(3×3) =

N1 0 0
0 N1 0
0 0 N1

 p = 2, (10a)

N(3×6) =

N1 0 0 N2 0 0
0 N1 0 0 N2 0
0 0 N1 0 0 N2

 p = 3, (10b)

3 RVE traction boundary conditions

In case of traction boundary conditions, the final system of linear equations is shown in
Figure 3, where additional matrices C, D and additional vector of unknown Lagrange
multipliers λ are due to the imposition of RVE boundary condition. Furthermore, matrix

=

Figure 3: Final matrix and vector arrangements for traction boundary conditions

C1 and corresponding vector of unknown Lagrange multipliers λ1 are used to restrict
the rigid body translations in x, y and z directions, while matrix C2 and corresponding
vector of unknown Lagrange multipliers λ2 are used to constrains the rigid body rotations
about x, y and z axis. In this case, for 1st order or p = 1, matrices C and D are written
as

C(6×9) =

∫

Γ

H(6×9)N
T
(9×3)N(3×9)dΓ, D(6×6) =

∫

Γ

H(6×9)N
T
(9×3)X(3×6)dΓ. (11)

The number of row of matrix C in this case are always 6 independent of the degrees of
freedoms used on the boundary. In traction boundary condition case all matrices appeared
in Equation (11) are the same as explained in the previous sections with only exception
of matrix H, which is different for each side of the RVE. For negative x-face of the RVE
matrix H is written as

H−

x =

−1 0 0 −1 0 0 −1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −1 0 0 −1 0 0 −1 0
0 0 0 0 0 0 0 0 0
0 0 −1 0 0 −1 0 0 −1

, (12)

4

where its each row represents admissible distribution of nodal traction, i.e. σ =
[

σxx σyy σzz σxy σxz σzx

]T
as shown in Figure 4 and 5 and its every adjacent

three columns belong to a nodes of a triangular element. For remaining negative y-face

Figure 4: Three-dimensional state of stress

Node 1 Node 2 Node 3

Figure 5: H-matrix for the RVE negative x-face

and negative z-face of the RVE matrix H is written as

H−

y =

0 0 0 0 0 0 0 0 0
0 −1 0 0 −1 0 0 −1 0
0 0 0 0 0 0 0 0 0
−1 0 0 −1 0 0 −1 0 0
0 0 −1 0 0 −1 0 0 −1
0 0 0 0 0 0 0 0 0

, (13)

5

H−

z =

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −1 0 0 −1 0 0 −1
0 0 0 0 0 0 0 0 0
0 −1 0 0 −1 0 0 −1 0
−1 0 0 −1 0 0 −1 0 0

. (14)

For the three positive faces, i.e. x, y and z matrix H is written as

H+
x = −H−

x , H+
y = −H−

y , H+
z = −H−

z (15)

where H−

x , H−

y and H−

z are the H matrices associated with the negative x, y and z faces
of the RVE, while H+

x , H+
y and H+

z are the H matrices associated with positive x, y and
z faces of the RVE.

Furthermore, in case of high order of approximation, e.g. 2nd and 3rd order, i.e. p = 2 and
p = 3 for each edge belongs to the negative x-face, matrix H is written as

H−

x
=

−1 0 0
0 0 0
0 0 0
0 −1 0
0 0 −1
0 0 0

, p = 2

−1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 −1 0
0 0 −1 0 0 −1
0 0 0 0 0 0

, p = 3

(16)

Matrix C1 associated with constraining rigid body translations is shown Figures 6, which
is constructed using equations

u1x + u2x + u3x + · · ·umx = 0, (17a)

u1y + u2y + u3y + · · ·umy = 0. (17b)

u1z + u2z + u3z + · · ·umz = 0. (17c)

Furthermore, matrix C2, associated with constraining rigid body rotations is shown in

Node 1 Node 2 N��� �

Figure 6: Constraint matrix C1 for rigid body translations

Figure 7, which is constructed using spin tensor [3] as

Spin(x) =

0 −z y
z 0 −x
−y x 0

 . (18)

6

Node 1 Node 2 ���� �

Figure 7: Constraint matrix C2 for rigid body rotations

4 RVE periodic boundary conditions

In this case the final system of linear equation is shown in Figure 8, which is the same
as shown in Figure 3 for traction boundary condition case but the number of rows of
matrix C, vectors λ and Dε̄ are 3m

2
. In this case a matching pair of nodes on opposite

faces of the RVE (e.g. nodes on positive and negative x-face with the same y and z
coordinates) will contribute to same row in matrix C and vector Dε̄. Therefore, only one
Lagrange multiplier λ is associated with such a pair of nodes. Due to this requirement of
matching nodes on negative and positive faces, the negative sides of the RVE are meshed
first, which is then copied to the positive faces of the RVE. Triangular prisms are then
inserted between the matching triangles on opposite sides of the RVE, which facilitates
easy handling of data during calculation and assembly of matrix C and vector Dε̄. A
sample triangular prism generated between element A on negative x-face and element B
on positive x-face of the RVE is shown in Figure 9. In this case numerical integration is
performed over these inserted triangular prisms and matrices C and D are calculated and
assembled. The integration procedure in this case is the same as already explained in the
displacement boundary conditions case in Equations 3 and 5 with the exception of matrix
H and the additional contribution to the same rows for matching pairs of nodes belongs
to positive and negative faces of the RVE. For this case matrix H is the (9 × 9) identity
matrix for negative x, y and z faces of the RVE, while for its positive x, y and z faces it
is given as

H+ = −H−, (19)

where H+ and H− are matrix H for positive and negative faces of the RVE respectively.

=

Figure 8: Final matrix and vector arrangements for displacement boundary conditions

7

Figure 9: Inserted prism between positive and negative x-axis

5 Calculation of homogenised stress

Expression for homogenised stress σ =
[

σxx σyy σzz σxy σyz σzx

]T
is given as [1]

σ =
1

V
DT

λ, (20)

where D is the same matrix, explained in the previous sections, V is the volume of the RVE
and λ are the Lagrange multipliers obtained after solution of the final system of equations
shown in Figures 1, 3 and 8 for the displacement, traction and periodic boundary condition
cases. The contribution to the homogenised stress σ is calculated individually for each
boundary triangular element separately, which are then assembled to calculate the full
RVE homogenised stress. For displacement boundary conditions and 1st order or p = 1,
for each individual triangular element of the RVE Equation (20) is written as

σ(6×1) =
1

V
DT

(6×9)λ(9×1) (21)

for 2nd and 3rd order, i.e. p = 2 and p = 3 for each edge of the triangular element Equation
20 is written as

σ(6×1) = 1
V

DT
(6×3)λ(3×1), p = 2

σ(6×1) = 1
V

DT
(6×6)λ(6×1), p = 3

. (22)

6 RVE input file for MoFEM

Geometry of the textile RVE, including fibres and matrix is generated using CUBIT which
is a software package for the creation of parameterised geometries and meshes. CUBIT is
linked with MoFEM, which can automatically read geometry, boundary conditions and
material properties from a file created in CUBIT. A sample RVE used here, including fibres
and matrix is shown in Figure 10, in which elliptical cross sections and cubic splines are

8

used respectively to model the cross sections and paths of the fibre. Transversely isotropic
materials are introduced for the fibres, while isotropic material is used for the matrix
part. A self-explanatory python script is used here to create the textile RVE geometry,
meshing and subsequently defining its material properties are given in Figure 11. The
python script gives us a flexible and automatic way to create an input textile RVE file for
MoFEM, i.e. a new textile RVE with all new material and geometry parameters can be
generated without manually repeating all the time consuming and error-prone steps.

Wwarp

hgap warp

HRVE

WRVE

LRVE

WweftWweft
Hweft

hgap weft

Vgap

Figure 10: RVE geometry with dimensions

7 RVE material properties and stiffness matrix as-

sembly

Stiffness matrix K, shown in Figures 1, 3 and 8 for displacement, traction and periodic
boundary conditions respectively consists of contributions from three different parts, i.e.
matrix, fibres and interfaces between fibres and matrix. Transversely isotropic material
[4, 5] are used for the fibres while isotropic material is assumed for the matrix part. Five
material parameters are required for the transversely isotropic material, i.e. Ep, νp, Ez,
νpz and Gzp where Ep and νp are Young’s modulus and Poisson’s ratio in the transverse
direction respectively, while Ez, νpz and Gzp are the Young’s modulus, Poisson’s ratio and
shear modulus in the fibre directions respectively. For the matrix part, only two material
parameters are required, i.e. Young’s modulus E and Poisson’s ratio ν. Material properties
for elastic and transversely isotopic material (including plane of isotropy and principal
axis) are shown in Figure 12. Stiffness matrix for the transversely isotropic material in
the local coordinates is given as [6]

C =

1−νpzνzp

EpEz∆
νp+νzpνpz

EpEz∆
νzp+νpνzp

EpEz∆
0 0 0

νp+νzpνpz

EpEz∆
1−νpzνzp

EpEz∆
νzp+νzpνp

EpEz∆
0 0 0

νpz+νpνpz

E2
p
∆

νpz(1+νp)
E2

p
∆

1−ν2
p

E2
p
∆

0 0 0

0 0 0 2Gzp 0 0
0 0 0 0 2Gzp 0

0 0 0 0 0 Ep

1+νp

, (23)

9

where

∆ =
(1 + νp) (1 − νp − 2νpzνzp)

E2
pEz

,
νpz
Ep

=
νzp
Ez

. (24)

The fibre directions at each Gauss point need to be determined, in order to re-orient the
stiffness matrix in local coordinates given in Equation 23 into global coordinates. These
fibres directions can simply be determined from the cubic splines, which were used in
the construction of these fibres. However, this can lead to inaccurate fibres directions in
the case of fibres with non-uniform cross-sections along their length. An alternative and
unusual way is used here, in which the fibres directions are determined by solving for the
potential flow field separately along each fibre. The governing equation for potential flow
is given as

∇
2φ =

∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0, (25)

where φ is the stream function, gradient of which, i.e. ∇φ = v subsequently determines
the fibre direction. The potential flow problem is also implemented in MoFEM using
hierarchic finite element [2], which enables to found very accurate fibres direction s to be
determined for very coarse meshes. A detailed description of how to transfer the stiffness
matrix for transversely isotropic material between local and global coordinate axis is given
in [4, 5]. An example of the output from a potential flow analysis for the textile is shown
in Figure 13.

Detailed theoretical background and implementation of the interface elements, which is
used here between the fibres and matrix part is given in [7].

References

[1] L. Kaczmarczyk, C. J. Pearce, and N. Bićanić. Scale transition and enforcement of
RVE boundary conditions in second-order computational homogenization. Interna-

tional Journal for Numerical Methods in Engineering, 74(3):506–522, 2008.

[2] M. Ainsworth and J. Coyle. Hierarchic finite element bases on unstructured tetrahedral
meshes. International Journal for Numerical Methods in Engineering, 58(14):2103–
2130, 2003.

[3] L. Kaczmarczyk, T. Koziara, and C. J. Pearce. Corotational formulation for 3D
solids. an analysis of geometrically nonlinear foam deformation. arXiv preprint
arXiv:1110.5321, 2011.

[4] Z. Ullah, L. Kaczmarczyk, M. Cortis, and C. J. Pearce. Multiscale modelling of
the textile composite materials. In Proceedings of the 22nd UK Conference of the

Association for Computational Mechanics in Engineering 2 - 4 April 2014, University

of Exeter, Exeter, pages 214–217, 2014.

[5] M. Cortis, L. Kaczmarczyk, and C. J. Pearce. Computational modelling of braided
fibre for concrete reinforcement. In Proceedings of the 22nd UK Conference of the

Association for Computational Mechanics in Engineering 2 - 4 April 2014, University

of Exeter, Exeter, pages 189–192, 2014.

10

[6] Transversely isotropic materials. Available at: eFunda: The ultimate online reference
for engineers. (Accessed date: 26 May 2014).

[7] J. Segurado and J. LLorca. A new three-dimensional interface finite element to sim-
ulate fracture in composites. International Journal of Solids and Structures, 41(11–
12):2977 – 2993, 2004.

11

(a) Part 1 of 3

#This scrip will create RVE including f bres and matrix, which can be used for all
#three type of boundary conditions including displacement, traction and periodic.

cubit.cmd('new')
#===
#Geometry Input parameters
#===
W_wrap=0.3; H_wrap=0.1514; hgap_wrap=0.09
W_weft=0.3; H_weft=0.0757; hgap_weft=1.2
L_RVE=3.0; W_RVE=0.8; H_RVE=0.3;
Vgap=0.012

s_weft=hgap_weft+W_weft; s_wraf=hgap_wrap+W_wrap
T=(H_weft/2+H_wrap/2)/2+Vgap

L_RVE=2*s_weft; W_RVE=2*s_wraf; H_RVE=0.3;

#===
#Create vertices for splines to create splines
#===

coordx=-11.5*s_weft; coordy=T; coordz=0;
for i in range(0, 24):

if i % 2 == 0:
str1='create vertex ' + str(coordx) +' '+str(coordy)+' '+str(coordz)+' color' ; coordx=coordx+s_weft;
cubit.cmd(str1)

if i % 2 == 1:
str1='create vertex ' + str(coordx) +' '+str(-coordy)+' '+str(coordz)+' color' ; coordx=coordx+s_weft;
cubit.cmd(str1)

coordx=-11.5*s_weft; coordy=-T; coordz=s_wraf;
for i in range(0, 24):

if i % 2 == 0:
str1='create vertex ' + str(coordx) +' '+str(coordy)+' '+str(coordz)+' color' ; coordx=coordx+s_weft;
cubit.cmd(str1)

if i % 2 == 1:
str1='create vertex ' + str(coordx) +' '+str(-coordy)+' '+str(coordz)+' color' ; coordx=coordx+s_weft;
cubit.cmd(str1)

coordx=-0.5*s_weft; coordy=-T; coordz=-11*s_wraf;
for i in range(0, 24):

if i % 2 == 0:
str1='create vertex ' + str(coordx) +' '+str(coordy)+' '+str(coordz)+' color' ; coordz=coordz+s_wraf;
cubit.cmd(str1)

if i % 2 == 1:
str1='create vertex ' + str(coordx) +' '+str(-coordy)+' '+str(coordz)+' color' ; coordz=coordz+s_wraf;
cubit.cmd(str1)

coordx=0.5*s_weft; coordy=T; coordz=-11*s_wraf;
for i in range(0, 24):

if i % 2 == 0:
str1='create vertex ' + str(coordx) +' '+str(coordy)+' '+str(coordz)+' color' ; coordz=coordz+s_wraf;
cubit.cmd(str1)

if i % 2 == 1:
str1='create vertex ' + str(coordx) +' '+str(-coordy)+' '+str(coordz)+' color' ; coordz=coordz+s_wraf;
cubit.cmd(str1)

#===
#Joint vertices to create splines
#===

Tvertices=24;
vertices=range(1,Tvertices+1); count1=0;
for i in range(0, 4):

str1='create curve spline vertex '
for j in range(0, 24):

str1=str1+' '+ str(count1+vertices[j])
cubit.cmd(str1); count1=count1+24;

#===
#Creating f bers with elliptical cross sections
#===

cubit.cmd('create planar surface with plane normal to curve 1 distance 0 from vertex 1')
str1='create curve location vertex 1 direction curve 8 length '+ str(W_wrap/2); cubit.cmd(str1)
str1='create curve location vertex 1 direction curve 7 length '+str(H_wrap/2); cubit.cmd(str1)
cubit.cmd('create surface ellipse vertex 102 104 1')
cubit.cmd('sweep surface 2 along curve 1')

cubit.cmd('create planar surface with plane normal to curve 2 distance 0 from vertex 25')
str1='create curve location vertex 25 direction curve 17 length '+ str(W_wrap/2); cubit.cmd(str1)
str1='create curve location vertex 25 direction curve 16 length '+str(H_wrap/2); cubit.cmd(str1)
cubit.cmd('create surface ellipse vertex 112 114 25')
cubit.cmd('sweep surface 6 along curve 2')

cubit.cmd('create planar surface with plane normal to curve 3 distance 0 from vertex 49')
str1='create curve location vertex 49 direction curve 24 length '+ str(W_weft/2); cubit.cmd(str1)

12

(b) Part 2 of 3

str1='create curve location vertex 49 direction curve 23 length '+str(H_weft/2); cubit.cmd(str1)
cubit.cmd('create surface ellipse vertex 122 124 49')
cubit.cmd('sweep surface 10 along curve 3')

cubit.cmd('create planar surface with plane normal to curve 4 distance 0 from vertex 73')
str1='create curve location vertex 73 direction curve 33 length '+ str(W_weft/2); cubit.cmd(str1)
str1='create curve location vertex 73 direction curve 32 length '+str(H_weft/2); cubit.cmd(str1)
cubit.cmd('create surface ellipse vertex 132 134 73')
cubit.cmd('sweep surface 14 along curve 4')

#===
#Deletion of remaining free vertices, curves and bodies
#===

cubit.cmd('delete vertex 50 20 53 52 69 36 81 65 54 67 17 22 63 70 16 42 12 93 10 2 37 84 85 43 31 6 71 \
13 55 78 95 9 90 56 57 15 94 66 83 44 3 8 79 76 39 5 19 27 35 18 47 7 92 21 62 82 4 64 88 68 89 80 \
23 14 33 41 26 38 59 75 34 74 91 77 11 60 58 86 87 32 61 30 51 40 29 28 46 45')
cubit.cmd('delete curve 1 3 36 9 19 27 10 2 4 28 37 18')
cubit.cmd('delete body 7 3 5 1')

#===
#Create matrix and imprint and merge f bres and matrix to create common surfaces
#===

str1='brick x '+str(L_RVE)+' y '+str(H_RVE)+' z '+str(W_RVE); cubit.cmd(str1)
str1='move Volume '+str(9)+' x '+str(0)+' y '+str(0)+' z '+str(s_wraf/2); cubit.cmd(str1)

cubit.cmd('intersect volume all keep')
cubit.cmd('delete volume 6 2 8 4')
cubit.cmd('subtract volume 10 11 12 13 from volume 9 keep')
cubit.cmd('delete volume 9')
cubit.cmd('imprint volume 10 11 12 13 14')
cubit.cmd('merge volume 10 11 12 13 14')

#===
#Meshing negative x, y and z face of RVE and coping the same to its positive faces
#===

cubit.cmd('group 1 add surface 42 27 24')
cubit.cmd('group "g2" add surface 44 25 28')
cubit.cmd('group "g3" add surface 39 30 33')
cubit.cmd('group "g4" add surface 31 40 34')
cubit.cmd('group "g5" add surface 43')
cubit.cmd('group "g6" add surface 41')

cubit.cmd('surface 42 27 24 size auto factor 6')
cubit.cmd('surface 42 27 24 scheme trimesh')
cubit.cmd('mesh surface 42 27 24')
cubit.cmd('surface 28 25 44 scheme mirror source surface 27 24 42 source vertex 167 target vertex 166 nosmoothing')
cubit.cmd('mesh surface 28 25 44')

cubit.cmd('surface 39 30 33 size auto factor 5')
cubit.cmd('surface 39 30 33 scheme trimesh')
cubit.cmd('mesh surface 39 30 33')
cubit.cmd('surface 31 34 40 scheme mirror source surface 30 33 39 source vertex 161 target vertex 166 nosmoothing')
cubit.cmd('mesh surface 31 34 40')

cubit.cmd('surface 43 scheme trimesh')
cubit.cmd('mesh surface 43')
cubit.cmd('surface 41 scheme mirror source surface 43 source vertex 165 target vertex 166 nosmoothing')
cubit.cmd('mesh surface 41')

#===
#Mesh volume
#===

cubit.cmd('volume all scheme Tetmesh')
cubit.cmd('mesh volume all')

#===
#Def ning blocks for elastic, transversely-isotropic and potential f ow problems
#===

vol=['14', '10,11,12,13','10', '11', '12', '13']
mat=['MAT_ELASTIC_1','MAT_TRANSISO_1','PotentialFlow1','PotentialFlow2','PotentialFlow3','PotentialFlow4']
for i in range(0, 6):

cubit.cmd('set duplicate block elements on')
str1='block ' + str(i+1) +' volume '+vol[i]; cubit.cmd(str1)
str1='block ' + str(i+1) +' name "'+mat[i] + '"'; cubit.cmd(str1)

#===
#Material properties for matrix part
#===

cubit.cmd('block 1 attribute count 2')
Em=3.5e3; Enu=0.35; #gig to mega as we used dimension in mm
Elastic=[str(Em), str(Enu)]

13

(c) Part 3 of 3

for i in range(0, 2):
str1='block 1 attribute index ' + str(i+1) +' '+Elastic[i]; cubit.cmd(str1)

#===
#Material properties for f bres
#===

cubit.cmd('block 2 attribute count 5')
Ep=40e3; Ez=230e3; nup=0.26; nupz=0.26; Gzp=24e3;

TransIso=[str(Ep), str(Ez), str(nup), str(nupz), str(Gzp)]
for i in range(0, 5):

str1='block 2 attribute index ' + str(i+1) +' '+TransIso[i]; cubit.cmd(str1)

#===
#Material properties for interface between f bres and matrix
#===

alpha_interf=500
cubit.cmd('set duplicate block elements on')
str1='block 7 surface 23 26 29 32'; cubit.cmd(str1)
str1='block 7 name "MAT_INTERF_1"'; cubit.cmd(str1)
cubit.cmd('block 7 attribute count 4')
str1='block 7 attribute index 1 '+str(alpha_interf); cubit.cmd(str1) #now we use 4 parameters for interface
str1='block 7 attribute index 2 '+str(0.0); cubit.cmd(str1)
str1='block 7 attribute index 3 '+str(0.0); cubit.cmd(str1)
str1='block 7 attribute index 4 '+str(0.0); cubit.cmd(str1)

#===
#Def ning interfaces
#===

Interface=['23', '26','29','32']
for i in range(0, 4):

str1='sideset ' + str(i+1) +' surface '+Interface[i]; cubit.cmd(str1)
str1='sideset ' + str(i+1) +' name "interface'+str(i+1); cubit.cmd(str1)

#===
#Def ning pressures for potential f ow problem
#===

Pres=['24', '25','27','28','30','31','33','34']; count=0
for i in range(0, 4):

str1='create pressure '+str(count+1)+' on surface '+str(Pres[count])+' magnitude 1'; cubit.cmd(str1)
str1='create pressure '+str(count+2)+' on surface '+str(Pres[count+1])+' magnitude -1'; cubit.cmd(str1)
count=count+2;

#===
#Def ning surfaces for displacement, traction and periodic boundary conditions
#===

cubit.cmd('sideset 101 surface 41 31 34 40 42 27 24') # all -ve boundary surfaces for periodic boundary conditions
cubit.cmd('sideset 102 surface 43 30 33 39 25 44 28') # all +ve boundary surfaces for periodic boundary conditions
cubit.cmd('sideset 103 surface 41 31 34 40 42 27 24 43 30 33 39 25 44 28') # all boundary surfaces

#===
#Def ning zero pressures for potential f ow problem
#===

cubit.cmd('nodeset 1 node 106, 140, 272, 279')
cubit.cmd('nodeset 1 name "ZeroPressure"')

#===
#Saving input RVE f le
#===

cubit.cmd('save as "/Users/zahur/Desktop/RVE_Meshes/Trans_RVE/RVE.cub" overwrite')

Figure 11: Python script for generation of RVE geometry with all input parameters

14

(a) Elastic (b) Transversely isotropic

Figure 12: Material properties for elastic and transversely isotropic material

Figure 13: Fibres directions calculated from potential flow problem

15

